Addressing and restoring three keystone habitats: salt marsh, eelgrass and shellfish beds Together

> Anamarija Frankic UMass Boston www.gbh.umb.edu

Photo: T. Kates, Full Frame Digital

Photo: A. Frankic

- Why care?
- . Salt Marsh
- Shellfish bedsEel grass beds
- Estuaries

Photos: R. Zottoli

 Next steps:
Bíomímícry ín Restoratíon

Why Care?

Ecosystem type	Standing carbon stock (gC m ⁻²)		Total global area	Global carbon stocks (PgC)		Longterm rate of carbon accumulation in sediment
	Plants	Soil	(10 m)	Plants	Soil	(gC m ⁻² yr ⁻¹)
Tidal Salt Marshes			Unknown (0.22 reported)			210
Mangroves	7990		0.157	1.2		139
Seagrass meadows	184	7000	0.3	0.06	2.1	83
Kelp Forests	120-720	na	0.02-0.4	0.009-0.02	na	na

IUCN, 2009. The management of natural coastal carbon sinks.

Why care about shellfish, eel grass and salt marsh?

(Beck, et al. 2001; Gillanders, B.W.

Corridors for movement

Filtration and Protection from Nitrogen load
(Valida, J. & M. Cole, 2002)

• Sediment trapping and stabilizing (Bos, A.R. et al., 2007; Agawin, N. & C. Duarte, 2002)

• Buffer s from storm surge and sea level rise (Gambi, M.C., et al., 1990; Morris, J.T., et al., 2002)

Global Distribution

Shellfish beds : > 90% loss of Oyster Reefs

Beck et al, 2010. Bioscience

Waycott M et al. PNAS 2009;106:12377-12381

Schematic of a typical Estuary

http://www.gomoos.org/aboutgulfme/

http://www.oceanmotion.org/html/resources/etopo.htm

zonation

High Tide

Low Tide

Subtidal Channels

are important habitat for fish at low tide. They allow good drainage and flooding in mudflats.

Mudflats are rich in invertebrate life for Shorebirds. Algal mat grow here also.

Low Marsh

is good habitat for cordgrass, insects, herons and egrets and the clapper rail.

High Marsh

supports pickleweed and patches of cordgrass. A good habitat for Savannah Sparrow and Clapper Rail.

http://www.mass.gov/czm/coastlines/2008/ebbflow/czscience.htm

http://www.seagrant.umaine.edu/book/export/html/335

The requirements for development of salt marshes:

- fine-grained sediments
- no strong waves or tidal currents
- salty conditions to grow
- a temperate or cool temperature; freezing temperatures can occur, but are not damaging the plants
- a wide tidal range, important because it limits the erosion, makes deposition of sediments possible and causes a well-marked zonation
- biodynamic coupling between saltmarsh and mudflat/sandflat!

Photos: A. Frankic

Positive feedback loops in ecosystem engineering: sediment transport, bioturbation, hydrodynamic conditions, biodiversity, etc.

Modeling? (Bouma et al, 2005)

From the coast into an estuary and a river...

Pioneer salt marsh plants colonizing bare intertidal sand habitat

(Photos by D. Frankengebrg, Bear Island, NC)

Extensive salt marsh developed on intertidal sands and mud flats;

Patches of salt marsh in the high salinity section of the estuary but not intertidal area; less than near the ocean and sources of sediment; at low tide;

(Photos by D. Frankengebrg, White Oak River estuary, NC)

Typical salt marsh plant zonation pattern:

black needle rush (back) and cord grass;

Salt marsh invading a forest (estuarine fringe pine forest) a sign of rising sea level

(Photos by D. Frankengebrg)

pine forest red cedars freshwater sawgrass black needle rush

Pensacola Bay System

and the second second

"Living shorelines" (soft structures) are defined as shoreline stabilization techniques that use natural habitat elements to protect shorelines from erosion while also providing critical habitat for wildlife.

http://www.dep.state.fl.us/northwest/ecosys/section/restoresaltmarsh.htm

Before and after shoreline restoration at Grande Lagoon, FL

These areas are often exposed to high wave energy as the result of the disappearance of historical oyster reefs. In order to achieve maximum protection for a newly created salt marsh from wave energy, increase biodiversity, and create a living shoreline, several different restoration projects are combined with salt marsh restoration. These include the installation of oyster reef breakwaters and the reintroduction of seagrass beds (SAV) into areas of historical abundance.

Think about Ch. Bay status and trends between oyster reefs, eel grass and salt marshes?

The shoreline was stabilized using sand fill and dredge material, coir fiber logs, wetland plans, submerged aquatic vegetation, an oyster reef breakwater, and fish habitat structures.

Horsehead, NC

<u>www.GFF inc.net</u> Manhattan restoration project in 2008;

Not convinced (yet) Why to use "soft", "living" structures instead of hard traditional ones? (e.g. seawalls, revetment, jetties, groins, bulkheads)

Ecological Services Provided By Coastal Ecosystem Engineers

Coral Reefs		Mangroves	Shellfish	
Regulating	Protection of beaches and coastlines from storm surges and waves	Protection of beach and coastlines from storm surges, waves, and floods	Protection of coastlines from storm surges and waves	
		Water quality maintenance	Water quality maintenance	
	Reduction of beach and soil erosion	Reduction of beach erosion	Reduction of marsh shoreline erosion	
		Climate regulation		
	Formation of beaches and islands	Stabilization of trapping land by trapping sediments	Stabilization of submerged land by trapping sediments	
Provisioning	Subsistence and commercial fisheries	Subsistence and commercial fisheries	Subsistence of commercial fisheries	
	Fish and invertebrates for the ornamental aquarium trade	Aquaculture	Aquaculture	
	Pharmaceutical products	Fuelwood		
	Building materials	Building materials	Building materials (lime) and tools	
	Jewelry and other decoration	Traditional medicines	Jewelry and other decoration (shells)	
Cultural	Tourism and recreation	Tourism and recreation	Tourism and recreation	
A State State	Spiritual and aesthetic appreciation	Spiritual-sacred sites	Symbolic of coastal heritage	
Supporting	Cycling of nutrients	Cycling of nutrients	Cycling of nutrients	
	Nursery and foraging habitats	Nursery and foraging habitats	Nursery and foraging habitats	

11. 198

www.ny.curbed.com GRO Architects

Green future for urban harbors? But How?

charles, Mystic; focus on green roofs and other pervious surfaces for waterenergy nexus in order to restore the watersheds self-sustainability;

Blue - Urban coastal intertidal area includes: a)the Harbor walk (potential sites for native species of shellfish, e.g. oysters, mussels); b)salt marsh; c) tidal mud flats with soft shell clam; and d) eelgrass beds; and

Ahupua'a Vision for Boston Harbor

GBH Ahupua'a Vision

Green - Boston Harbor Islands tidal areas with similar key coastal habitat restoration activities.

(Source: Frankic and Greber, 2010)

Next Steps: Biomimicry and Coastal Restoration

General Hypothesis - by combining restoration of three keystone coastal habitats they will respond and recover better, as well as provide ecological services more effectively and efficiently in the long run.

Savin Hill Cove a potential site for a "Living Lab" at UMass Boston

Photos: A. Frankic

Biomimicry for Multi Habitat Restoration (Frankic et al, 2011. *in press*)

		Biomimicry Application:				
Biomimicry Life's Principles	Keystone coastal habitats	Research Activities at Sites 1 & 2	Design & Restoration Activities at Pier 5	Human Systems (e.g. Green Harbors)		
Evolve to survive: interdependent, fostering community based relationship		Assessing relationships between habitats and evolving adaptations	Established floating habitats of three interconnected coastal communities;	Teaching and learning by working in a "living lab" at an educational		
Be resource efficient: low energy multi- functional processes, recycling, fit form to function;		Trophic exchange, water-energy recycling,	In situ water-energy nexus, self-recyclable and self-sustainable cyclic positive feedback loops;	y Green Holistic Education for Green Jobs and Green Sustainable Economy		
Resilient - adapting to changing conditions;	Salt Marsh Eel Grass Shellfish	Assessing diversity, function, self- renewal and health of each habitat;	Floating coastal habitats retain resiliency in the face of sea level rise, storm surge, water quality etc.			
Integrate Development and Growth: self- organize,		Habitats carrying capacity and sustainability; nested relationship in ecosystems	Floating coastal habitats are nested within clear physical space and limits.			
Be locally attuned and responsive: cyclic processes and feedback loops		In situ water-energy nexus, self- recyclable and self- sustainable cyclic positive feedback loops	Biomimicing ecosystems and functions that would likely exist if the build structures were not there.			
Live using only friendly chemistry (water base chemistry and self-assembly)		Water quality and quantity conditions	Use of local, natural untreated materials, such as granite, sustainable and recycled wood for build structures.	Greening Coastal Urban Areas (e.g. Green Boston Harbor)		

Resources:

- http://na.unep.net/atlas/index.php
- http://na.unep.net/atlas/google.php
- Canada Knife River delta and snow gees http://na.unep.net/atlas/webatlas.php?id=91
- Defina et al, 2007. Self-organization of shallow basins in tidal flats and saltmarshes.
- Bouma et al, 2005. Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterizations.
 - Fagherazzi et al, 2005. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes.
- Gedan et al, 2009. Centuries of Human-Driven Change in Salt Marsh Ecosystems.
 - Doody, J.P. 2008. Salt marsh conservation, management and restoration. Springer.
 - NOAA/CSC. Digital Coast

